Programme de colle semaines 19 et 20 - du 05/03 au 16/03

Questions de cours

• Soient $n, k, p \in \mathbb{N}$ avec $p \leq k \leq n$. En utilisant une interprétation ensembliste, montrer que

$$\sum_{k=p}^{n} \binom{n}{k} \binom{k}{p} = 2^{n-p} \binom{n}{p}$$

• Calculer un nombre d'anagrammes sur un exemple.

Chapitre 18. Ensembles et applications.

Reprise du programme précédent.

Chapitre 19. Ensembles finis et dénombrement.

I) Ensembles finis

Définition. Un ensemble est dit fini lorsqu'il est vide ou en bijection avec un ensemble [1; n]où $n \in \mathbb{N}^*$.

Cardinal d'un ensemble fini. Notations Card (A), |A|, #A.

Proposition. Si $f \in F^E$ est une application bijective avec E fini, alors F est fini de même cardinal.

▲ L'utilisation systématique de bijections dans les problèmes de dénombrement n'est pas un attendu du programme, mais c'est parfois utile de préciser celles-ci.

Cardinal d'une partie d'un ensemble fini, cas d'égalité.

Proposition. Soit $f \in F^{E}$.

Si E est fini et f est surjective, alors F est fini et Card (E) \geq Card (F).

Si F est fini et f est injective, alors E est fini et Card (E) \leq Card (F).

Si E et F sont finis de même cardinal, alors f est injective si et seulement si f est surjective si et seulement si f est bijective.

Application du premier point au principe des tiroirs.

- II) Cardinaux, dénombrement
- 1) Opérations sur les cardinaux

Union disjointe ou quelconque de deux ensembles finis, complémentaire, produit cartésien. Union disjointe d'un nombre fini d'ensembles finis.

▲ La formule du crible est hors programme.

Cardinal de l'ensemble des applications d'un ensemble fini dans un ensemble fini. Nombre de p-listes (ou p-uplets) d'éléments d'un ensemble de cardinal n; c'est n^p .

2) Arrangements et injections

Nombre d'applications injectives d'un ensemble de cardinal p dans un ensemble de cardinal n, c'est $A_n^p = \frac{n!}{(n-p)!}$.

Un arrangement de p éléments de F est une p-liste d'éléments de F deux à deux distincts, ie $(x_1, \ldots, x_p) \in F$ tels que $\forall (i, j) \in [1; p]^2, x_i \neq x_j$.

3) Permutations et bijections

Proposition. Si E et F sont des ensembles finis de même cardinal n, alors le nombre de bijections de E dans F est $A_n^n = n!$.

Une permutation d'un ensemble E de cardinal n est un arrangement de n éléments de E, ie une bijection de E dans E.

Nombre de permutations d'un ensemble E de cardinal n; c'est n!.

C'est aussi le nombre de façons d'ordonner E.

4) Parties d'un ensemble et combinaisons

Cardinal de l'ensemble des parties d'un ensemble fini.

Nombre de parties à p éléments (ou p-combinaisons) d'un ensemble fini de cardinal n.

Exemples.

Nombre d'anagrammes d'un mot.

Nombre de façons de choisir, parmi n joueurs disponibles, une équipe de k joueurs, dont p titulaires.

Exemples de techniques de double comptage (question de cours).

Démonstrations combinatoires des formules de Pascal et du binôme.

▲ Les étudiants doivent savoir distinguer les situations et utiliser les outils correspondants. Situations additives, multiplicatives, identiques, injectives, avec ordre, sans ordre...